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ABSTRACT Agroecosystems are human-managed ecosystems subject to generalized
ecological rules. Understanding the ecology behind the assembly and dynamics of
soil fungal communities is a fruitful way to improve management practices and plant
productivity. Thus, monitoring soil health would benefit from the use of metrics that
arise from ecological explanations that can also be informative for agricultural man-
agement. Beyond traditional biodiversity descriptors, community-level properties
have the potential of informing about particular ecological situations. Here we assess
the impact of different farming practices in a survey of 350 vineyard soils from the
United States and Spain by estimating network properties based on spatial associa-
tions. Our observations using traditional approaches show results concurring with
previous literature: the influence of geographic and climatic factors on sample distri-
butions, or different operational taxonomic unit (OTU) compositions depending on
agricultural managements. Furthermore, using network properties, we observe that
fungal communities ranged from dense arrangements of associations to a sparser
structure of associations, indicating differential levels of niche specialization. We
detect fungal arrangements capable of thriving in wider or smaller ranges of temper-
ature, revealing that niche specialization may be a critical soil process impacting soil
health. Low-intervention practices (organic and biodynamic managements) pro-
moted densely clustered networks, describing an equilibrium state based on mixed
collaborative communities. In contrast, conventionally managed vineyards had highly
modular sparser communities, supported by a higher coexclusion proportion. Thus,
we hypothesize that network properties at the community level may help to under-
stand how the environment and land use can affect community structure and eco-
logical processes in agroecosystems.

IMPORTANCE Soil fungal communities play a key role in agroecosystem sustainability.
The complexity of fungal communities, at both taxonomic and functional levels,
makes it difficult to find clear patterns connecting community composition with eco-
system function and to understand the impact of biotic (interspecies interactions)
and abiotic (e.g., climate or anthropogenic disturbances) factors on it. Here we com-
bine network analysis methods and properties, proposing a novel analytical
approach: to infer ecological properties from local networks, which we apply to the
study of fungal communities in vineyard soils. We conclude that different levels of
farming intensification may lead to different ecological strategies in soil fungal com-
munities settled by particular association arrangements.
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Fungal biodiversity is a major component of soil ecosystems. The community com-
position, characteristics, and behavior have consequences for the whole ecosystem

where these organisms thrive. In summary, fungi are directly involved in ecosystem
services (organic matter transformations, nutrient cycling, biocontrol agents) and have
effects on plant and crop physiology through fungus-plant interactions (i.e., they gen-
erate bioactive phytochemicals, and they regulate pathogen occurrence) (1). As an
attempt to understand the underlying ecological processes explaining how microbial
communities are shaped, most studies currently focus on correlative evidence between
specific taxon abundance, diversity metrics, and environmental factors or community
phenotypes (2). And although valuable, it has been argued that this strategy does not
allow understanding the underlying ecological mechanisms by which communities
react to environmental factors or by which these communities organize to perform an
ecosystem-level process (3). Hence, developing a strategy to mechanistically under-
stand the fungal component of the soil microbiome has general implications in moni-
toring soil health and may be of particular interest for guiding management strategies
of agroecosystems. In particular, developing and understanding measurable metrics
can be a critical step for future microbiome monitoring applications, such as in sustain-
able farming or food production (4). Indeed, smart farming demands new biomarkers
to monitor soil health (see U.S. Department of Agriculture [USDA] definition at https://
www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/), since comprehensive informa-
tion is often inaccessible to land managers (5), and a single universal methodology to
measure soil quality and health based on the microbiome does not exist yet (6, 7) de-
spite notable efforts (8, 9).

In this sense, we aim at suggesting an approach that can be both theoretically rele-
vant and also informative for land managers. Ecological communities are often defined
by functional traits, which result from the aggregation of taxon characteristics (10, 11)
or through properties arising from specific combinations of taxa (12, 13). These com-
munity-level properties are characteristics that are proxies of ecological processes,
which further determine species pools, trophic fluxes (3), or ecosystem maturity (11).
Exploring them may lead to predictions of how communities would behave under con-
crete circumstances. Methodologically, there have been different strategies to measure
such properties in microbiomes, but here we aimed at describing community-level
properties by combining large-scale associational networks (from now on, metawebs)
and a methodological innovation to split inferred associations into local communities.

Using spatial associations based on cooccurrence or coexclusion probabilities is a
widespread approach to study why some taxa cooccur or not at different scales. These
associations are not direct evidence of ecological interactions (14) but are proxies of
the assembly rules at the sampled scale. These assembly rules are often dominated by
environmental filters and affinities (15) and dispersal restrictions (16, 17), and also by
some biotic interactions (18, 19), although these seem to have a strong bias toward
positive facilitation interactions (20). In summary, associations are a combination of
these three broad categories, and when they are combined on a metaweb, we obtain
a general view of the spatial assembly. These large-scale metawebs have been
adequately used to understand taxon affinities to separate ecological niches or geo-
graphic clusters or to isolate potential ecological interactions (16; R. Ortiz-Álvarez, V. J.
Ontiveros, A. Barberán, J. A. Capitán, D. Alonso, and E. O. Casamayor, submitted for
publication). However, these metawebs hardly give an idea of the variety of potential
arrangements of local communities, since each local community likely comprises only
a fraction of taxa. We argue that integrating the metaweb-inferred associations with
the particular subset of taxa from local communities will allow the estimation of
network properties to obtain information about the local microbial ecosystem (Fig. 1)
serving as community-level properties. Yet, at the same time, it will allow direct com-
parison among network property communities, even in the absence of common
taxa among them. Thus, we aimed at describing the existing relationships between dif-
ferent network properties (e.g., modularity, clustering coefficient) or association
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FIG 1 Constructing local community networks from metawebs. Association networks using various spatial scales have been successfully
applied to understand the organization and environmental preferences of microbes (15), the fraction of positive trophic interactions (20),
generalist versus specialist strategies of particular microbes (81), or even ecological guilds according to potential biotic interactions once the
effect of the environment has been removed (Ortiz-Álvarez et al., submitted). This approach is a common strategy in global or regional
studies to give general insights of particular metacommunities or larger spatial scales. However, these networks do not inform about the
actual arrangements of species in local communities, where species may be loosely or densely connected or display local adaptations to
niches or functional guilds. Inferring the local network properties of individual samples characterizes the microbiome of a given sample in
terms of its association structure, providing a unique layer of information when studying the biodiversity and stability of a sample or
monitoring its evolution in time and during environmental disturbances. Other studies have theorized about how a biogeographical
distribution of species interactions is arranged inlocal communities within a given metacommunity or metaweb (82), although this requires
the understanding of all the interactions, which is not always possible. Here we combine the metaweb association patterns with local
species arrangements to retrieve properties related to particular association arrangements. Considering n local communities within a
metaweb, we infer significantly associated pairs of species (both positively and negatively associated). These pairs are later sorted for each
local arrangement, so only pairs present in each individual sample are considered, to construct local networks, with particular

(Continued on next page)
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distributions (e.g., coexclusion proportions) and how these can provide information of
particular assemblies and ecological strategies. For example, studies of the soil rhizo-
sphere show that coexisting functional niches linked to distinct environmental stimuli
modulate soil carbon dynamics (21) or that the abundance of antibiotic resistance
genes in the topsoil is higher at higher fungal abundances through competitive inter-
actions (22). Also, theoretical studies show that networks can structure in “random” or
“small-world” arrangements, and these have particular network properties that can
indicate an increased resilience or resistance toward species extinctions (23). Here we
will discuss whether network properties could be proxies of such processes or others
and suggest further studies to deepen the subject, while indicating whether these
could have implications in measuring soil health.

It has been reported that land use and crop management have a strong effect on
fungal soil ecosystem functioning (1, 24, 25). When contextualizing community-level
properties into management, we will consider that agroecosystems in general, and
vineyards in particular, can be managed under three different intensification levels,
according to how cultural, biological, and mechanical practices foster the cycling of
resources, promote ecological balance, or conserve biodiversity (26): (i) “conventional”
management, which allows a wide variety of chemical fertilizers or pesticides; (ii) “or-
ganic” management, subjected to strict limits on the use of mineral nitrogen fertilizers
and synthetic phytosanitary products; and (iii) “biodynamic” management, as an
extreme scenario that rejects the use of mineral nitrogen fertilizers and synthetic pesti-
cides but promotes the use of compost-based fertilization and cover crops, and the
use of specific preparations—based on fermented plant materials—to enhance soil fer-
tility and microbial diversity. Since geography, climate, and agriculture management
are likely to affect the composition of fungal communities in vineyard soils (27), here
we aimed to delve into the functional implications of these changes, understanding
whether the structure of local fungal networks can give information about the domi-
nant ecological processes in fungal communities.

To summarize, in this work, we use network properties (i.e., modularity, clustering
coefficient) based on large-scale associations (cooccurrences and coexclusions) as
proxies of ecological strategies at the community level (e.g., niche differentiation, com-
petition processes). We further evaluate how these properties are affected by environ-
mental conditions and by the agricultural management of vineyard soils in the face of
different levels of farming intensification (conventional, organic, or biodynamic man-
agement). To achieve this, we first evaluated large-scale structure of metawebs and
quantified the influence on community assembly of geography, weather, and network
properties. We followed by inferring the network structure of individual samples using
the estimated large-scale associations of the two countries studied, United States and
Spain. We anticipate that this methodological strategy could be widely applied to
understand the effect of environmental disturbances in both natural and human-man-
aged ecosystems and in other fields of interest such as food production or human
health.

RESULTS AND DISCUSSION
Fungal community assembly in vineyard soils is affected by biogeography and

management factors. Vineyards are human-managed ecosystems, and as one of the
most long-lived crops, they are preserved, managed, and exploited for centuries in the

FIG 1 Legend (Continued)
network properties requiring an ecological interpretation. The ecological interpretation varies according to the positive or negative nature of
the associations used to construct the networks, leading to quantifying and understanding the effect of ecological disturbance in
ecosystems. Now we define the most important network properties used in our study. Connected components are the subnetwork in which
any two nodes connect to each other by edges, that lack connection to any other node in the full network. The clustering coefficient is the
measure of the degree to which nodes in a graph tend to cluster together in terms of connected triangles (three nodes that are connected
with three edges) in the network (73, 74). The average path length is the mean of the minimal number of required edges to connect any
two nodes (73, 74). Modularity is the measure of the strength of a partition into modules (groups of nodes). A good network partition
harbors a higher proportion of edges inside modules compared to the proportion of edges between them (72).
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same soil. Therefore, vineyard soils can be assumed as stabilized and bounded ecosys-
tems, with its biodiversity molded for decades by the influence of geography, climate,
plant-microbe interactions (28–31), but also by human intervention through different
types of farming practices which have been demonstrated as a major driver of fungal
community composition, impacting vine health and wine fermentation performance
(32–34). In this work, we analyzed two data sets of fungal communities, obtained fol-
lowing an internal transcribed spacer (ITS)-amplicon sequencing strategy in vineyard
soil samples from the United States and Spain (175 soil samples per country, collected
from 2015 to 2018 in vineyards managed with different farming practices: conven-
tional, organic, and biodynamic). The amplicon sequences obtained were then
mapped to a list of 31,516 operational taxonomic units (OTUs) with at least 97% iden-
tity. Samples had only a fraction of OTU richness, averaging 529 OTUs (minimum [min],
23; maximum [max], 4,999) per soil sample.

We observed that vineyard soils from both countries showed similar alpha and beta
diversity ranges (Fig. 2a), and similar proportions of dominant fungal classes (see
Fig. S1 in the supplemental material). However, the multivariate ordination of OTU
composition showed origin-dependent clusters (Fig. 2b), where the United States and
Spain samples were separated by the large geographical distance. In a global study
from fungal communities (35), strong biogeographic patterns appear to be driven by
dispersal limitation and climate, and our data support this idea. Here we also show
that the use of different farming practices for vineyard management has an impact on

FIG 2 Fungal diversity levels and composition of U.S. and Spain vineyard soil samples. (a) Comparison of alpha diversity (H9) and beta diversity
(betadispersion) of samples between countries (no significant differences [P , 0.05] were found between countries). (b) Nonmetric multivariate ordination
(nMDS) of OTU composition, and definition of country-dependent clusters (analysis of similarity [ANOSIM] R= 0.31, P = 0.001). (c) Multivariate ordination of
samples from Spain and definition of management-dependent clusters (ANOSIM R= 0.18, P = 0.001). (d) Multivariate ordination of samples from the United
States and definition of management-dependent clusters (ANOSIM R= 0.17, P = 0.001). (e) Cooccurrence/coexclusion fungal network of the Spanish
metaweb (fraction with the most abundant OTUs) with colored modules (Sp1 to Sp4). (f) Cooccurrence/coexclusion fungal network of the U.S. metaweb
(fraction with the most abundant OTUs) with colored modules (US1 to US4). Equivalent numbering of modules in the two metawebs does not imply any
compositional equivalence.
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fungal community composition (Fig. 2c and d), as previously observed by Hartman et
al. (36). It is important to highlight that although Spain has the largest organic grape
cultivar worldwide (with 100,000 ha of organic grapes) (37), the fungal diversity differ-
ence of organic vineyards compared to conventional vineyards is actually undetectable
(Fig. 2c). However, in the case of the United States, we observed a more evident effect
of this type of management on the soil fungal diversity, showing an intermediate pat-
tern between conventional and biodynamic managed vineyards (Fig. 2d).

Given these different country-defined sample clusters (Fig. 2b), both data sets were
analyzed separately, and two different metawebs were constructed based on two
groups of significant cooccurrence/coexclusion probabilities: one for U.S. samples and
one for Spain samples (Fig. 2e and f). The study of these metawebs revealed a single
connected component with different metaweb properties by continent (modularity,
España or Spain [ES] = 0.36, United States [US] = 0.28; clustering coefficient, ES = 0.31,
US = 0.57; average path length, ES = 1.91, US = 1.96), a higher observed proportion of
cooccurrences in Spain (ES = 0.0696, US = 0.0305) and a similar proportion of coexclu-
sion edges out of the total combinations (ES = 0.0030, US = 0.0028). In addition, both
metawebs had four different modules (Fig. 2e and f), each with particular temperature
ranges. In metawebs, the majority of associations are derived from the main environ-
mental niches or dispersal (15, 38; Ortiz-Álvarez et al., submitted). In our metawebs, we
observed variability in the ranges of maximum temperature for the fungi in each mod-
ule in both countries, but in a stronger manner in Spain where modules Sp1 and Sp4
(composed by a minority number of OTUs) exhibit opposite temperature preferences
(Fig. S2a and b). Since temperature is a critical factor shaping the fungus-mediated soil
organic matter decomposition (25, 39) and a major driver of the structure of our fungal
communities (Fig. S3), we may expect spatial heterogeneity of this process. The fact
that communities have OTUs distributed across a wide range of temperatures is rele-
vant, since drought-resistant fungi control soil organic matter decomposition and its
response to temperature fluctuations (25). Therefore, maybe the presence of fungi ca-
pable of thriving in broader temperature ranges (such as in the Spanish module Sp4 or
U.S. module US2 or US3) is beneficial for soil health. In turn, higher temperatures
change carbon allocation within mycorhizal networks (39); hence, that situation may
lead to a greater loss of soil carbon and may be detrimental for soil health. A final note
regarding modularity of metawebs: these modules show the variability at large spatial
scales but are not equally distributed in the local communities. Indeed, each local com-
munity has different completeness of each of the modules (Fig. S2c and d) and these
vary according to the local modularity value. Hence, the evaluation of local network
properties requires an additional layer of discussion.

Network properties understood as biomarkers of ecological strategies and
environmental filters. Metawebs constructed using large-scale spatial associations,
multivariate techniques, and correlative evidence are often used to interpret overall
characteristics of a study system (40). We move forward from this strategy by deriving
community-level properties using the large-scale spatial associations and the local
community compositions (Fig. 1). By constructing smaller networks for these commun-
ities, we are able to classify community types within the whole study area, a common
goal when using network theory (41). When evaluating network properties for each
community, we observe that the network properties have wider ranges than the over-
all value of these properties in the whole metawebs, for instance modularity
(ES = 0.003 to 0.42, US = 0.08 to 0.31), or clustering coefficient (ES = 0.44 to 0.93,
US = 0.34 to 0.66) (see the full list of ranges in Table S1 in the supplemental material).
Interestingly, despite the geographic differences, most of the network metrics had sim-
ilar relationships in the two areas (Fig. 3), indicating a pattern consistency that we find
worthy to contextualize. Out of the properties based on cooccurrences, the strongest
association was an inverse relationship between clustering coefficient and average
path length (Fig. 3), indicating how densely connected are the networks, and thus the
degree of association between nodes. This relationship shows a gradient between two
alternative situations, which based on network theory can be interpreted as a random
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network (low clustering, high path length) or a small-world structure (high clustering,
low path length) (42). When interpreting these two network properties at the commu-
nity level, we may gain information about how the actions in one part of the commu-
nity affect others; for instance, in such theoretical small-world networks, random loss
of species is unlikely to affect the overall properties of the network, implying a degree
of overall resistance toward potential perturbations (23, 43). In this regard, a densely
connected network of cooccurrences may represent a well-integrated collaborative
fungi community, where its organisms could have cooperative activities (such as facili-
tation, syntrophy and/or cross-feeding) (20) and where the loss of one organism may
not affect community functionality and hence not be detrimental (43). However, the
low clustering situation, which network theory interprets as “random” may not be ran-
dom but may be simply reflecting a different soil situation as shown by a relationship
with another network property: modularity.

Modularity indicates the degree of separation of the network into modular compo-
nents (a fraction of nodes within the network have more edges among each other
than with other fractions of nodes in the network). Modularity can successfully sepa-
rate groups of organisms below the level of community that have a shared mix of asso-
ciations (Ortiz-Álvarez et al., submitted). This shared mix of associations may be to-
gether for multiple reasons. Since associations across the spatial scale mostly reflect
the presence of environmental thresholds (20; Ortiz-Álvarez et al., submitted), it makes
sense that the primary reason behind modules at large spatial scales are these thresh-
olds (15). However, since we estimate modularity for each single community, with a
single set of environmental conditions, there are four possible ways to interpret high
modularity. (i) The community has multiple sets of OTUs that may change depending
on the environmental situation, for example, by changing weather in different seasons
(25). (ii) We may also find sets of OTUs that reflect microscale niches such as topsoil
versus soil a few centimeters deeper (21). (iii) Modularity may be indicating independ-
ent environmental factors, for example, a group of organisms promoted by a particular
pH level, and another group of organisms that is primarily promoted by a particular
temperature (15), (iv) Finally, modularity may be an indicator of functional guilds, with
each guild with independent affinities (44, 45). With all these possibilities, we can dis-
cuss that we are dealing with some kind of “niche specialization,” although we cannot

FIG 3 Relationships between network properties. Positive (green) and negative (red) relationships between network properties were
obtained based on Spearman’s r correlations . j0.5j in at least one country and P , 0.01. Cooccurrences (1) and coexclusions (2) are
depicted. Relationships within metawebs for Spanish samples have r values in blue, and relationships within metawebs for the U.S.
samples have r values shown in yellow. Interpretation of the properties and their associations are indicated in boxes: small-world
versus random networks, niche specialization versus mixed communities, and high versus low competitive exclusion. Values for
relationships between properties in a large-scale continental metaweb (merging U.S. and Spain databases) follow similar trends with
the following values (Spearman’s r correlations . j0.5j and P , 0.01): Ave.p.length (1) and Clustering (1) = 20.88; Ave.p.length (1)
and Modularity (1) = 0.78; Clustering (1) and Modularity (1) = 20.59; Coexclusion (Coex.) proportion (2) and Ave.p.length (2) =
20.50; Coex. proportion (2) and Modularity (2) = 20.58; Modularity (2) and Ave.p.length (2) = 0.74.
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indicate which of the possibilities we are detecting. Interestingly, we observe an
inverse relationship between the clustering coefficient (1) with modularity (1) (Fig. 3).
Considering the previous interpretation of densely connected networks being those
with fungi preferring the same environmental conditions, perhaps those with low
modularity are indicative of low niche specialization, indicating fungal communities ca-
pable of responding holistically and consistently toward environmental gradients (i.e.,
temperature [Fig. S2]) or whose members take advantage of metabolic by-products by
cross-feeding or facilitation (46). However, their functional capabilities or ranges of
reaction may be more limited and less flexible.

In addition to the possibilities discussed above to explain niche specialization, this
phenomenon is also one of the main strategies that organisms can pursue to survive
over time in highly competitive environments (47), where competition is central in reg-
ulating community assembly over time (47, 48). Because of its importance, we aimed
to evaluate whether the proportion of coexclusions could be considered an indicator
of competition processes. First, we need to consider that we base coexclusions on the
premise that a pair of OTUs occur together less than expected at random. In large-scale
metawebs, these segregated pairs can indicate different niche specialization (groups of
OTUs that are specialized to a particular environment and cannot thrive elsewhere),
different geographic locations (a physical dispersal barrier that impedes OTUs from
coinciding in a particular sample), or competitive processes (i.e., antifungal and toxin
production [49] or differences in resource use efficiency [45]). The estimated coexclu-
sions are a mix of the phenomena mentioned above, and it is not possible to state
whether a coexclusion is the consequence of one or more of them. In addition, large-
scale associations tend to overemphasize disjoint distributions (14), but in the local
networks constructed in our study, there are two particularities. Since each sample
belongs to a single locality, it is unlikely that a coexclusion in that community is the
consequence of a dispersal difference, and since each sample has a single full set of
environmental characteristics, coexclusions in a sample can exist only if (i) the local
community has territorial niches assigned (50), (ii) the local community has different
OTU groups adapted independently to environmental or functional niches (45), or a
combination of the two. Otherwise, since OTUs that should not occur together do
occur together, we may interpret them as potential competitors, whose pairs can and
have been observed often to coexist (51). Although this strategy does not retrieve the
strongest competitors that impede its counterpart to coexist, as shown in controlled
simulations (14), it still would retrieve a fraction of them, hence, coexclusion proportion
may be indicating some kind of overall competitive equilibrium. Indeed, we observed
in our results that highly modular cooccurrence networks (with modularity interpreted
as niche specialization) sustain a higher proportion of coexclusions (Fig. 3), which may
be quantifying both increased competition processes and stronger niche separations.
Furthermore, in the case of fungi, the specialization of functional guilds may be part of
the local coexclusions observed. If this were the case, fungi may be competing for the
same limiting resource through interference competition (such as in mycorrhizal fungi
versus saprotrophs) (45), thus affecting soil carbon dynamics (39, 45).

We argue that we have been able to contextualize three network properties based
on cooccurrences/coexclusions to assess part of the ecology of local fungal commun-
ities, demonstrating that measuring local network properties substantially increased
the proportion of community arrangement variations explained by the other abiotic
factors such as temperature (Fig. S4). These results point to the crucial relevance of
emergent mechanistic processes on community assembly based on species associa-
tions as previously suggested (52). Clustering coefficient, modularity, and the propor-
tion of coexclusions may be critical in the internal ecological mechanisms between the
effect of the environment and the influence in ecosystem processes that may ulti-
mately define soil health. Because these three have relationships between each other,
we interpret that these are three components that seem to be indicative of the ecolog-
ical strategies that communities can implement in its assembly. These sides are the
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ecological stability toward OTU extinctions by having a degree of integration of its
members, how the community is separated into environmental niches (hence, affect-
ing stability toward an environmental perturbation), and how likely is that these niches
are related to fungal competition processes, which may help to shape these niches.

Farming practices are associated with fungal community structure and
network properties. The environment affects fungi at the community level, having
consequences in community-level properties. Moreover, in vineyards, soil communities
are partially shaped by human activities. In fact, Table 1 shows that the farming prac-
tices applied in a vineyard are a major predictor of the network properties of soil fun-
gal communities, with estimate values much higher than other relevant environmental
factors such as the local temperature, humidity, or wind speed. Our results indicate
that management strategies (particularly conventional versus biodynamic approaches)
affect network properties of fungal soil communities, following similar trends in the
two countries studied. We observed that soils under biodynamic management had
higher clustering coefficient (1), lower modularity (1), and lower coexclusion propor-
tion than the conventionally managed soils, with organic managed samples tending to
show intermediate values between conventional and biodynamic samples (Fig. 4). In
our context, biodynamic-farmed vineyards showed microbial communities closer to (i)
small-world networks (higher clustering coefficient [1]) and (ii) mixed (low niche spe-
cialization) communities (lower modularity [1]) (Fig. 4, left and middle), properties
which are related to enhanced system homeostasis (47) and to higher resistance to-
ward species removal and perturbations. Indeed, land use has been shown to affect
the resistance of soil food webs, and in extensively managed grasslands, these webs
were more resistant and adaptable to temperature fluctuations and drought (24).
Conversely, conventionally managed vineyards were associated with low clustered,
highly modular fungal networks (Fig. 4, left and middle) with a larger proportion of
coexclusions compared to other management types (Fig. 4, right), as previously
observed in root-associated fungal networks from farmlands (53), where increased
intensification practices reduced fungal network connectivity. We wonder whether the
use of punctual fertilization programs with high doses of specific nutrients, as in con-
ventional farming, may drive a metabolic specialization leading to an arrangement of
niches (46), which seems likely given our observations in conventionally managed sam-
ples, in contrast to the more densely connected communities under biodynamic man-
agement. It should be noted that, for both modularity (1) and coexclusion proportion,
the actual scores observed for the samples are, on average, lower than expected by
random, according to a null model expectation—independently of the type of man-
agement but with a significant trend further away from the results expected by ran-
dom in biodynamic samples compared with conventional samples (Fig. S5). Opposite
values are observed for clustering coefficient (1) scores, where the actual values tend
to be higher than expected by random, according to a null model expectation, and

TABLE 1 Effects of management type, humidity, temperature, and wind speed on
modularity, clustering, and coexclusion proportiona

Fixed effect

Estimated value± standard errorb

Modularity
(r2 = 0.955)

Clustering
(r2 = 0.665)

Coex. proportion
(r2 = 0.999)

Conventional management 21.6376 0.118*** 20.7306 0.072*** 25.1296 0.335***
Organic management 21.6866 0.115*** 20.7366 0.072*** 25.1826 0.333***
Biodynamic management 22.4196 0.153*** 20.5186 0.074*** 26.0566 0.376***
Humidity 20.1266 0.028*** 0.0486 0.014*** 20.1806 0.053***
Temperature 20.0846 0.032** 0.0836 0.014*** 20.1076 0.054*
Wind speed 20.0136 0.023 20.0126 0.009 0.0206 0.035
aIn each generalized mixed model, regionality was included as a random effect. Coex. proportion, coexclusion
proportion.

bMarginal r2 are indicated in the table column names. Asterisks indicate a significant contribution of this variable
as an estimate on the model: ***, P, 0.001; **, P, 0.01; *, P, 0.05.
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with a significant increasing trend—further away from the results expected by random
—in biodynamic samples compared with conventional samples. It is noteworthy that,
in the case of Spain, only biodynamic samples show clustering coefficient (1) scores
different (higher) from those expected by random, highlighting the outstanding struc-
ture of fungal communities under this type of management. Ultimately, biodynamic
management has been reported to lead to higher-quality grapes in vineyards than
conventional management, with organic practices showing an intermediate effect,
based on soil fertility, nutrient availability, enzyme activity, and earthworm abundance
(26). Taking our results together, we have observed that communities with lower mod-
ularity (1) had higher completeness of modules that were associated with wider tem-
perature ranges (Fig. S2). According to the higher clustering coefficient values and
lower proportion of coexclusions under biodynamic management (Fig. 4), this man-
agement would sustain community resistance toward, at least, temperature fluctua-
tions. A similar result was reported in a grassland experiment, where drought reduced
the proportion of negative correlations, and showed that fungi were better adapted to
drought than bacteria (54).

Because the assessment of fungal biodiversity as soil health indicators cannot be lim-
ited only to the determination of diversity indexes (1), we argue that a combination of
local network properties is a useful approach to understand soil health. However, diver-
sity indexes may still be useful. In this study, we observe that alpha diversity (H9) is
higher in the communities with a lower modularity and a lower proportion of coexclu-
sions than sparsely connected communities (r = 20.41, P , 0.001). This result agrees
with the previous interpretations regarding aspects of biodiversity-ecosystem stability
(55–58), so communities with the highest diversity may have presumably higher resist-
ance toward perturbation and would tolerate wider temperature variations. In parallel,
the coexclusion proportion was associated with lower plant pathogen richness (r =
20.28, P , 0,001) (Fig. S6a). By using a linear model, we predicted that at the lowest
coexclusion proportion values (such as those from biodynamic and organic manage-
ments), the probability of the presence of a plant pathogen rises to 80% (Fig. S6b).
However, it is essential to note that a higher richness or abundance of pathogens in soils
does not always imply a higher risk of disease development. For instance, land manage-
ment practices, including reduced tillage, may improve soil health by promoting fungal
populations with suppressive effects against pathogenic microorganisms (1). Given that
organic management and biodynamic management may use tillage systems to compen-
sate for the reduction/absence of chemical fertilizers and phytosanitary products, it is
understandable that under organic and biodynamic management, the presence of
pathogens may be more likely. To wrap up, environmental conditions, the direct conse-
quences of phytosanitary programs, and the whole fungal community context are the
determinants for the quality and health of the soil ecosystem. We suggest that network
properties should be taken into account in future in-field studies regarding plant patho-
gens and natural soil control.

FIG 4 Impact of farming practices in fungal network properties. Boxplot of network properties, (left) Modularity
(1), (middle) Clustering (1), (right) Coexclusion proportion (2) under different management practices and
countries. For each property, it is indicated if there is a statistically significant difference, according to a two-
way ANOVA (n.s., not significant [*, P , 0.01]).
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Conclusions and perspectives. There is an urgent need for systems-level approaches
for understanding agroecosystem functioning and for studying their sustainability in
terms of resistance and resilience (1, 59). In this sense, the inference of community-level
properties (3) based on association networks seems a successful strategy to follow. Here we
have deciphered different ecological strategies that fungal communities adopt in the face of
different levels of farming intensification and explored how these may impact soil health in
terms of external factors (temperature ranges, management practices) and plant pathogens.
On the basis of our findings, we can conclude that even in a single ecosystem, human inter-
vention can determine two alternative fungal community assembly strategies: a collabora-
tive well-mixed habitat in soils under biodynamic management with potentially higher
resistance toward, at least, temperature variations, or a more divided habitat, with fungi
belonging to more niches but with lower reaction range to temperature in soils under con-
ventional managements. We interpret these situations as alternative equilibrium states of
communities (Fig. 5), with those from biodynamic managements closer to small-world net-
works, acknowledging the critical impact of microbial associations on microbial community
assembly, moving away from the highly specialized niche-partitioned environments that
characterize soils under conventional management. Scaling up to the broader picture, sev-
eral authors have proposed that two of the major forces driving the current global change
in ecosystems functioning—habitat modification and climate change—are expected to
select habitat generalists instead of those habitat specialists with lower biodiversity levels
and a higher niche partitioning (60, 61). Under this framework (Fig. 5), our results may guide

FIG 5 Contextualizing fungal community structure and ecological strategies in vineyard soils based on network
properties. Based on our results, the use of contrasting agricultural management systems (conventional versus
biodynamic) may lead to different combinations of community-level properties and community structures in
vineyard soils. The fungal communities favored under biodynamic management may resemble a community
structure close to that in wild cooperation-based environments, as opposed to the specialized environment
found in conventionally farmed vineyards. As highlighted in a recent consensus paper (83), the niche
specialization found in global soil fungal and bacterial communities and their sensitivity to environmental
changes may compromise the future delivery of agroecosystem services. This statement is based on the
demonstrated effect that climate change consequences, such as aridity, have on the reduction in the microbial
diversity and abundance of soils. This problem may be greater in highly specialized niche-partitioned
environments with increased competition/coexclusion, where lower functional redundancy, lower cross-feeding
processes, and species loss may have a stronger impact on community stability. We argue that fungal
communities closer to small-world and collaborative networks, as in biodynamic managed soils, can be more
resistant to the continuously changing environment imposed by climate change and land use than sparser
partitioned communities. Thus, community-level properties may be useful to evaluate for soil health in
agricultural systems, since soil health reflects the capacity of soil to respond to agricultural intervention while
sustaining both the agricultural production and providing other ecosystem services (84). Thus, the biological
sustainability of agroecosystems comes from the interaction of the biological processes provided by a diversity
of interacting soil organisms and the influence of the abiotic soil environment, with human intervention
playing a key role in this interaction.
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future in-field studies on the biodiversity-stability hypothesis, its relevance for agriculture sus-
tainability, and how human intervention may drive a better future for agroecosystems. Here
we want to recognize some limitations of our survey, since unfortunately, we did not evalu-
ate interesting physical-chemical aspects of the soils analyzed (e.g., pH, nutrient availability,
etc.) that would help us in understanding the actual reasons explaining the significant pat-
terns observed across management types. Thus, we encourage further experimental studies
in agriculture soils under different management types under controlled conditions, including
longitudinal (time series) studies in conversion scenarios (changing from conventional to or-
ganic or biodynamic farming) to unravel the main biotic and abiotic factors driving the fun-
gal community assembly patterns in terms of their local network properties. For instance,
evaluating how network properties change during time series may give clear indications
about the resistance and resilience of fungal communities or shed light into the dynamics of
soils under different anthropogenic disturbances. For now, the contextualized network prop-
erties based on large spatial-scale associations may be used as biomarkers to measure the
effect of farming practices or temperature change consequences in the health status of soils.
Given the key role that microorganisms play in agri-food systems in general, and in the wine
industry in particular, these findings are useful for establishing monitoring programs of crop-
associated microbial diversity, supporting the work of alliances such as the Soil Health
Institute (soilhealthinstitute.org), the USDA (www.nrcs.usda.gov/wps/portal/nrcs/main/soils/
health/), or the Global Initiative of Crop Microbiome and Sustainable Agriculture (www
.globalsustainableagriculture.org), while promoting soil healthiness through agriculture sus-
tainable strategies. We hope that this work may inspire other researchers on the use of net-
work properties at the community level in microbiomes at several different contexts, from
the human microbiome (to understand the role of microbiome in health and disease) to the
microbial communities found in extremely anthropogenic ecosystems such as food fermen-
tations or industrial bioreactors.

MATERIALS ANDMETHODS
Sample collection, environmental, and management metadata. This study is a microbial ampli-

con-based survey that includes a total of 350 soil samples from vineyards from the United States (175
samples; mostly California and southern states) and Spain (175 samples) collected in the period from
2015 to 2018 (see Fig. S7 in the supplemental material). All the samples were of topsoil, taken at a 30-
cm distance from the vine trunk, within a depth between 5 and 10 cm. Each sample from a single block
was made pooling together topsoil from three random spots in each block. For these samples, we col-
lected geographic location (latitude, longitude, and altitude), and extracted meteorological metadata
from the Dark Sky API site (https://darksky.net/poweredby/): climatic information (precipitation intensity,
precipitation probability, maximum temperature, minimum temperature, dew point, humidity, environ-
mental pressure, wind speed, wind bearing, wind gust, cloud cover, and UV index). Regarding manage-
ment systems, vineyards considered “organic” are subject to the regulation of the USDA in the United
States (62) and European Commission (63) in Spain. In brief, organic methods integrate cultural, biologi-
cal, and mechanical practices that foster cycling of resources, promote ecological balance, and conserve
biodiversity. Synthetic fertilizers, sewage sludge, irradiation, and genetic engineering may not be used.
Vineyards considered “biodynamic” follow the certification described by the Demeter association
(https://www.demeter-usa.org). Biodynamic farms aspire to generate their own fertility through com-
posting, integrating animals, cover cropping, and crop rotation. Finally, vineyards considered “conven-
tional” follow a farming system, using a variety of synthetic chemical fertilizers, pesticides, herbicides,
and other continual inputs. We asked landowners to provide information about the crop management
system (conventional, organic, or biodynamic practices) and compared them when available (124 sam-
ples from the United States [conventional {n= 65}, organic {n= 39}, and biodynamic {n= 20}] and 172
samples from Spain [conventional {n= 78}, organic {n= 79}, and biodynamic {n= 15}]).

DNA extraction protocol and sequence filtering. Soil samples were stored at 280°C until DNA
extraction. DNA extraction was performed using the DNeasy PowerLyzer PowerSoil kit (Qiagen). A
complete overview of all the samples used in this study and their origin is reported in Table S3 in the
supplemental material and in BioProject PRJNA672044 metadata (see Fig. S7 for an overview of the geo-
graphical distribution of samples. Maps were prepared using the software QGIS with the Google base
map). Libraries were prepared following the two-step PCR protocol from Illumina and sequenced on an
Illumina MiSeq using paired-end sequencing (2 � 300 bp). Libraries were prepared by the ITS1 region
using Biome Makers custom primers (64). Raw files are available under BioProject accession number
PRJNA672044. Raw sequences were analyzed using Vsearch using default parameters (65). Briefly, raw
paired-end fastq sequences were merged, filtered by an expected error of 0.25, dereplicated, and sorted
by size. We filtered out chimera sequences and clustered nonsingleton sequences into 97% identity
OTUs. All combined sequences were then mapped to a list of 31,516 OTUs with at least 97% identity,
resulting in an OTU table with 54,738,544 sequences, averaging 156,395 sequences per soil sample (min,
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21,232; max, 1,213,767). Samples had only a fraction of OTU richness, averaging 529 OTUs (min, 23; max,
4,999) per soil sample. OTUs were classified with the UNITE database with the UTAX pipeline (66).

Network analyses for the estimation of community-level properties. For the estimation of net-
work properties first, we prepared the microbial community data set. Before starting this part of the
pipeline, we rarefied samples to a sequencing depth of 20,000 sequences; so all OTUs had equal detect-
ability in all the samples. Then, we filtered out the OTUs with the lowest occurrence, so we kept only
those OTUs that appeared in at least 2% of the samples, keeping 5,753 OTUs in Spain and 4,784 OTUs in
the United States. We checked for a potential effect of not using all the species of the metaweb using a
Mantel test of Bray-Curtis dissimilarities, showing that the filtered communities represented the full local
communities adequately. Then, because of current debates on the appropriate use of covariance/corre-
lation methods to infer cooccurrences from microbial community data (67), we chose to transform data
to presence/absence, and apply a conservative strategy: the probabilistic method of Veech (68). In short,
the Veech model estimates the probability of two species cooccurring or coexcluding each other, at a
frequency less or greater than the observed frequency if the two species were distributed independently
among sites. In this regard, it is critical to avoid varying sequencing depths and detectability bias (69),
which we bypass by rarefying our data set. Out of all the existent methods to estimate cooccurrences,
this method is among the most conservative, does not rely on correlations (70), is fast and analytically
exact, and does not assume a prior network structure.

Finally, we retrieved significant pairwise cooccurrence and coexclusion probabilities (P , 0.05) sepa-
rately for samples from the United States and Spain. The full list of positive and negative significantly
associated pairs represents the potential for interactions in the complete metaweb and/or environmental
distributions. The two lists of positive and negative pairs were transformed into two species matrices rep-
resenting the possibility of cooccurrence/coexclusion in the whole metaweb. To estimate network proper-
ties in each local sample, the two metaweb-based species matrices were subsequently subset into 350
matrices containing only the species occurring in each of the individual samples. It should be noted that
this filtering step can be done with pairwise lists of cooccurrences estimated in different manners, such as
with covariance/correlation cooccurrence estimation methods such as SparCC or SPIECeasi (67). Each of
these matrices were transformed into undirected networks using the R package igraph (71), where nodes
represent species and edges represent statistically significant cooccurrences/coexclusions. For each net-
work, we estimated the following properties as implemented in the r package igraph (71): the number of
connected components, modularity using the cluster walktrap algorithm (72), clustering coefficient
defined as average transitivity (71, 73), and average path length (74) (a larger-scale metaweb, considering
both U.S. and Spain samples, was punctually used to calculate the relationship between network proper-
ties in a unique large-scale continental context; results reported in the legend of Fig. 3). We also calculated
the proportion of cooccurrences and coexclusions observed out of the total number of combinations of all
the OTUs in the sample. A full representation of the process followed is displayed in Fig. 1 (part of this
methodology is in a pending patent [75]). All networks were drawn with gephi (76).

Statistical analyses. For the estimation of alpha diversity and for the cooccurrence estimation, we
rarefied samples to 20,000 sequences per sample. We assessed whether weather or management had
an effect on network properties through Spearman correlations and Kruskal-Wallis tests, respectively. To
estimate the relative contribution of weather, geographic location, and network properties in explaining
the heterogeneity in the fungal metawebs, we performed a variation partitioning analysis using the non-
metric multidimensional scaling (nMDS) two-dimension scores as the response variables. The three sets
of variables were subject to a forward selection procedure, removing colinear variables, prior to their
use as explanatory groups of variables (77). To evaluate how environmental properties (data normalized
as the mean deviance per country) and farming practices (both defined as fixed effects) may predict
local network properties, we performed a generalized linear mixed model (GLMM) with regionality
(USA_northwest, USA_southwest, USA_east, Spain_west, Spain_east, and Spain_islands) as a random
effect. In addition, we confirmed the effect of farming practices in local network properties by
performing a two-way analysis of variance (ANOVA) (including the country as an independent variable).
To evaluate the degree in which local network properties deviate from a null model expectation, matri-
ces containing only the species occurring in each of the individual samples were randomized across the
metaweb cooccurrence/coexclusion matrices. We then calculated the number of standard deviations
that the observed property is from the mean of the null distribution (1,000 randomizations). We further
studied whether we could predict the presence or absence of plant pathogens (using a curated list of
vineyard pathogens; see Table S2), by quantifying the total number of plant pathogens. We further used
a model to calculate predicted probabilities of presence of pathogens, by fitting variables [Transitivity
(1), Modularity (1), Ave.p.length (2) and coexclusion proportion] into a generalized linear model (GLM)
using a binomial distribution. Statistics were calculated in the R environment using packages base, vegan
(78), and GUniFrac (79) and drawn in ggplot2 (80).

Data availability. Raw files are available under BioProject accession number PRJNA672044.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.2 MB.
FIG S3, PDF file, 0.03 MB.
FIG S4, PDF file, 0.7 MB.
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